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Abstract. According to recent progresses in the finite size scaling theory of disordered systems, thermo-
dynamic observables are not self-averaging at critical points when the disorder is relevant in the Harris
criterion sense. This lack of self-averageness at criticality is directly related to the distribution of pseudo-
critical temperatures Tc(i, L) over the ensemble of samples (i) of size L. In this paper, we apply this
analysis to disordered Poland-Scheraga models with different loop exponents c, corresponding to marginal
and relevant disorder. In all cases, we numerically obtain a Gaussian histogram of pseudo-critical tem-
peratures Tc(i, L) with mean T av

c (L) and width ∆Tc(L). For the marginal case c = 1.5 corresponding to
two-dimensional wetting, both the width ∆Tc(L) and the shift [Tc(∞) − T av

c (L)] decay as L−1/2, so the
exponent is unchanged (νrandom = 2 = νpure) but disorder is relevant and leads to non self-averaging at
criticality. For relevant disorder c = 1.75, the width ∆Tc(L) and the shift [Tc(∞)−T av

c (L)] decay with the
same new exponent L−1/νrandom (where νrandom ∼ 2.7 > 2 > νpure) and there is again no self-averaging
at criticality. Finally for the value c = 2.15, of interest in the context of DNA denaturation, the transition
is first-order in the pure case. In the presence of disorder, the width ∆Tc(L) ∼ L−1/2 dominates over the
shift [Tc(∞)−T av

c (L)] ∼ L−1, i.e. there are two correlation length exponents ν = 2 and ν̃ = 1 that govern
respectively the averaged/typical loop distribution.

PACS. 64.60.-i General studies of phase transitions – 64.70.-p Specific phase transitions – 05.40.Fb
Random walks and Levy flights – 61.30.Hn Surface phenomena: alignment, anchoring, anchoring
transitions, surface-induced layering, surface-induced ordering, wetting, prewetting transitions, and wetting
transitions

1 Introduction

The stability of pure critical points with respect to weak
bond disorder is governed by the Harris criterion [1]: near
a second order phase transition in dimension d, the bond
disorder is irrelevant if the specific heat exponent is nega-
tive αpure = 2 − dνpure < 0 or equivalently if the correla-
tion length exponent νP ≡ νpure > 2/d. On the contrary
if νP < 2/d, disorder is relevant and drives the system to-
wards a random fixed point characterized by a new corre-
lation length exponent satisfying the general bound νR ≡
νrandom ≥ 2/d [2]. More recently, important progresses
have been made in the understanding of finite size prop-
erties of random critical points [3–8]. The main outcome
of these studies can be summarized as follows. To each dis-
ordered sample (i) of size L, one should first associate a
pseudo-critical temperature Tc(i, L), defined for instance
in magnetic systems as the temperature where the sus-
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ceptibility is maximum [3,5,6,8]. The disorder averaged
pseudo-critical critical temperature T av

c (L) ≡ Tc(i, L) sat-
isfies

T av
c (L) − Tc(∞) ∼ L−1/νR (1)

where νR is the correlation length exponent. Equation (1)
generalizes the analogous relation for pure systems

T pure
c (L) − Tc(∞) ∼ L−1/νP . (2)

The nature of the disordered critical point then depends
on the width ∆Tc(L) of the distribution of the pseudo-
critical temperatures Tc(i, L)

∆Tc(L) ≡
√

V ar[Tc(i, L)] =

√

T 2
c (i, L) −

(
Tc(i, L)

)2

.

(3)
When the disorder is irrelevant, the fluctuations of these
pseudo-critical temperatures obey the scaling of a central
limit theorem as in the Harris argument:

∆Tc(L) ∼ L−d/2 for irrelevant disorder. (4)
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This behavior was first believed to hold in general [3,5],
but was later shown to be wrong in the case of random
fixed points. In this case, it was argued [4,6] that equa-
tion (4) should be replaced by

∆Tc(L) ∼ L−1/νR for random critical points (5)

i.e. the scaling is the same as the L-dependent shift of the
averaged pseudo-critical temperature (Eq. (1)). The fact
that these two temperature scales remain the same is then
an essential property of random fixed points that leads to
the lack of self-averaging for observables at criticality [4,6].
More precisely, for a given observable X , it is convenient
to define its normalized width as

RX(T, L) ≡ X2
i (T, L)− (Xi(T, L))2

(Xi(T, L))2
. (6)

If ξ(T ) denotes the correlation length, the following be-
havior of RX(T, L) is expected [4,6]:
(i) off criticality, when L � ξ(T ), the system can be

divided into nearly independent sub-samples and this
leads to ‘Strong Self-Averaging’

RX(T, L) ∼ 1
Ld

off criticality for L � ξ(T ) ; (7)

(ii) in the critical region, when L � ξ(T ), the system
cannot be divided anymore into nearly independent
sub-samples. In particular at Tc(∞) where ξ = ∞, one
can have either ‘Weak Self-Averaging’

RX(Tc(∞), L) ∼ L
αP
νP for irrelevant disorder (αP < 0)

(8)
or ‘No Self-Averaging’

RX(Tc(∞), L) ∼ Cst for random critical points. (9)

In this paper, we study from this point of view disordered
Poland-Scheraga models with different loop exponents c,
corresponding to either a pure second order transition
with respectively marginal/relevant disorder according to
the Harris criterion, or to a pure first-order transition.
In each case, we numerically compute the histogram of
pseudo-critical temperatures and study the self-averaging
properties at criticality. The paper is organized as follows.
In Section 2, we recall the definition of Poland-Scheraga
(PS) models, the critical properties of the pure transitions
and the disorder relevance. In Section 3, we describe the
observables that we numerically compute for disordered
PS models. We then present our results for the different
loop exponents considered, namely (i) c = 1.5 (marginal
disorder) in Section 4; (ii) c = 1.75 (relevant disorder) in
Section 5; (iii) c = 2.15 (case of a first-order transition in
the pure case) in Section 6.

2 Poland-Scheraga models: disorder relevance
at pure critical points

2.1 Critical properties of pure Poland-Scheraga
models

We first consider the adsorption (or wetting) transition
of a polymer chain onto an impenetrable substrate. This

model corresponds to a Poland-Scheraga model with loop
exponent c = 1.5. This wetting model in dimension 1+1 is
defined as follows. The substrate is located at z = 0. The
polymer chain has L monomers, and the position zα of
monomer (α) satisfies zα ≥ 0, with z1 = zL = 0 (bound-
bound boundary conditions). The partition function of the
model reads

Z =
∑

(RW )

e−βH (10)

where H =
∑L

α=1 εα δzα,0. In equation (10), β = 1
kBT is

the inverse temperature and the sum runs over all walks
(RW) such that |zα+1 − zα| = ±1. This problem can be
formulated à la Poland-Scheraga [9] in terms of the loop
statistics, where each loop of length l has a weight 2l

l3/2 .
We consider here generalized PS models where each loop
of length l has a weight 2l

lc , with exponent c > 1.
In the pure case εα = ε0, the loop distribution at Tc =

Tc(∞) is

P pure
Tc (l) ∼ 1

lc
. (11)

For c > 2, the averaged length 〈l〉 =
∫

dl lP pure
Tc (l) is finite,

so that the number n(Tc) of contacts with the substrate
is extensive (n(Tc) ∼ L); the transition is therefore first
order. For 1 < c < 2, the averaged length 〈l〉 diverges,
and the Lévy sum of n independent variables li drawn
from the distribution (11) scales as l1 + ...+ ln ∼ n1/(c−1).
As a consequence at criticality, the number of contacts
npure

L (Tc) in a sample of length L scales as

npure
L (Tc) ∼ Lc−1 (12)

and the transition is second order. The contact density
thus decays as

θpure
L (Tc) =

npure
L (Tc)

L
∼ Lc−2. (13)

Its finite-size scaling form

θpure
L (T ) = Lc−2Q

[
(T − Tc)L

1
νP

]
(14)

involves the crossover exponent φP = 1
νP

= c − 1.

2.2 Harris criterion on 2d order transitions 1< c <2

The Harris criterion [1] concerning the stability of pure
second order transitions with respect to the addition of
disorder relies on the sign of the specific heat exponent

αP = 2 − νP =
2c − 3
c − 1

. (15)

An equivalent way to decide whether disorder is relevant
consists in a simple power-counting analysis of the disor-
der perturbation exactly at Tc: the pure finite-size contact
density 〈δzi,0〉pure ∼ Lc−2 of equation (13) yields that the
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perturbation due to the presence of a small disorder in the
contact energies εi = ε0 + δεi scales as

L∑

i=1

δεi〈δzi,0〉pure ∼ L1/2 × Lc−2 = Lc− 3
2 . (16)

Disorder is thus irrelevant for 1 < c < 3/2 and relevant for
3/2 < c < 2. The marginal case c = 3/2 has been debated
for a long time [10–16] and is of special interest since it cor-
responds to two-dimensional wetting as explained above.
As a consequence, we have chosen to study in parallel the
cases c = 1.5 and c = 1.75.

2.3 Disorder relevance on 1st order transitions c > 2

The effect of disorder on first-order transitions has been
discussed for a long time [17–20]. In this respect, the most
frequently studied system [21,22] is the 2D Potts model
with q > 4, for which the Aizenman-Wehr theorem [18]
states that disorder changes the critical behavior from first
order to second order. The recent numerical study of this
phenomenon [22,23] however shows that there are many
subtleties : in particular, the latent heat that vanishes
for continuous disorder, remains finite for binary disorder.
Disorder effects on Potts models have also been studied in
3D [24].

Since all these studies consider spin systems displaying
coexisting domains in the pure case, their conclusions can-
not be directly applied to the PS-model for the following
polymeric reasons [25]: in the PS model, there is no sur-
face tension between the localized and delocalized phases,
and there exists an diverging correlation length 1/(Tc−T )
in the pure case. So here, the simplest way to discuss the
relevance of disorder consists in the simple power-counting
analysis of the disorder perturbation exactly at Tc as in
equation (16). Here for c > 2 where 〈δzi,0〉pure is finite,
the perturbation due to the presence of a small disorder
in the contact energies εi = ε0 + δεi scales as

L∑

i=1

δεi〈δzi,0〉pure ∼ L1/2. (17)

As a consequence, disorder is relevant.
In this paper, we consider the case c = 2.15 where

the pure transition is first order, since this value is of
interest for DNA denaturation [26–29]. Furthermore, the
effect of disorder on this transition has been recently de-
bated [25,30,31].

3 Observables studied in disordered PS
models

3.1 Numerical details

As explained in details in our previous papers [16,25],
the PS models can be numerically studied via the recur-
sion relations satisfied by the partition function, with a

Fixman-Freire scheme [32] for the entropy of loops. All
results presented in this paper have been obtained for in-
dependent quenched random contact energies (εα), dis-
tributed with a binary distribution. For 1 < c < 2, we
have chosen ε = 0 or ε = ε0 with probabilities (1/2, 1/2),
with ε0(c = 1.5) = −350 K and ε0(c = 1.75) = −440 K,
to obtain critical temperatures in the same temperature
range. For c = 2.15 of interest in DNA denaturation, we
have taken the same values as in our previous study [25],
namely ε = −355 K or ε = −390 K with probabilities
(1/2, 1/2).

The data we present correspond to various sizes L
with corresponding numbers ns(L) of independent sam-
ples. Unless otherwise stated, we have considered the fol-
lowing sizes going from L = 2 × 103 to L = 2048 × 103,
with respectively ns(L = 2 × 103) = 3.84 × 106 to
ns(L = 2048×103) = 15×103. More precisely, we consider

L

1000
= 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 (18)

ns(L)
1000

= 3840, 1920, 960, 480, 240, 120,

60, 30, 15, 30, 15. (19)

3.2 Definition of a sample-dependent pseudo-critical
temperature

In the magnetic systems studied in [3,6], the pseudo-
critical temperature Tc(i, L) of the sample i was identified
to the maximum of the susceptibility. In the PS model,
one can not follow the same path and we have tried two
different definitions:

Definition of a pseudo-critical temperature from the
free-energy
In the pure PS model with bound-bound boundary condi-
tions, the behavior of the partition function as a function
of temperature reads

Zpure
L (T < Tc) 	

L�1/(T−Tc)νP
(Tc − T )νP−12Le(Tc−T )νP L

Zpure
L (Tc) 	 2L

L2−c
(20)

Zpure
L (T > Tc) 	

L�1/(T−Tc)νP

2L

(T − Tc)2Lc

with νP = 1/(c − 1). A finite-size pseudo-critical temper-
ature T

pure(f)
c (L) can then be defined as the temperature

where the free-energy reaches the extensive delocalized
value Fdeloc = −TL ln 2, i.e. T

pure(f)
c (L) is the solution

of the equation

F pure
L (L, T ) + TL ln 2 = 0. (21)

This definition from the free-energy is very natural, but
has the drawback of introducing a logarithmic factor

T pure(f)
c (L) − Tc(∞) ∼

(
ln L

L

)1/νP

(22)
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with respect to the purely algebraic factor usually ex-
pected (Eq. (2)). This logarithmic factor comes from
the finite-size free-energy value exactly at criticality
F pure

L (L, Tc) = −TcL ln 2 + (2 − c)Tc ln L (Eq. (20)). In
the disordered case, we may similarly define a sample-
dependent pseudo-critical temperature T

(f)
c (i, L) as the

solution of the equation

F
(i)
L (L, T ) + TL ln 2 = 0 (23)

but logarithmic corrections are to be expected at least in
the shift (Eq. (1)). Since these logarithmic factors may
alter the numerical measures of critical exponents in the
disordered cases, we have also considered another defini-
tion of Tc(i, L).

Definition of a pseudo-critical temperature from a
sample-replication procedure
In the pure PS model with 1 < c < 2, another finite-
size critical temperature T

pure(θ)
c (L) may be defined as

the temperature where the appropriately rescaled contact
densities cross (Eq. (13))

L2−cθpure
L

[
T pure(θ)

c (L)
]

= (2L)2−cθpure
2L

[
T pure(θ)

c (2L)
]
.

(24)

If corrections to scaling are neglected, the temperature
T

pure(θ)
c (L) follows the usual algebraic behavior (Eq. (2)),

in contrast with the other definition T
pure(f)
c (L) that in-

troduces logarithmic corrections (22).
This definition can be extended to the disordered case

via the following strategy first introduced in [25] for the
case c = 2.15 (with bound-unbound boundary conditions).
In short, one considers a sample (i) of length L, the sample
(2i) of length 2L, obtained by gluing together two copies
of sample i, as well as the sample (4i) obtained by gluing
together four copies of sample i: the three contact densi-
ties of (i), (2i) and (4i) cross at a temperature (see Fig. 9b
of [25]) that can be interpreted as the pseudo-critical tem-
perature Tc(i, L) of the disordered sample (i) of length L.

Here we generalize this procedure to the case 1 < c <
2. The basic idea is that in disordered Poland-Scheraga
models, the loop distribution has exponent c at critical-
ity in the thermodynamic limit as in the pure case (11).
We have found numerically this property in our previous
studies on the wetting transition with c = 1.5 [16] and on
the DNA denaturation with c = 2.15 [25]. This suggests
that the density of contacts scales as L2−c at criticality as
in (13).

For 1 < c < 2, we have thus tried to define a sample-
dependent pseudo-critical temperature Tc(i, L) as follows.
For each sample (i) of length L, we construct the sample
(2i) of length 2L by gluing together two copies of sample
i, as well as the sample (4i) by gluing together four copies
of sample i. We then plot the rescaled contact densities

yT (i, L) = θT (i, L) L2−c (25)

with its two analogs yT (2i, 2L) = θT (2i, 2L) (2L)2−c and
yT (4i, 4L) = θT (4i, 4L) (4L)2−c. Typical results obtained

respectively for the cases c = 1.5 and c = 1.75 with
two disordered samples i = i1, i2 are shown in Figure 1:
for each sample (i), the three rescaled contact densities
yT (i, L), yT (2i, 2L) and yT (4i, 4L) cross at a tempera-
ture that we defined as the pseudo-critical temperature
T

(θ)
c (i, L) of the disordered sample i of length L. This

crossing of three curves validates the present replication
procedure to define a proper pseudo-critical temperature.

Discussion

Each definition of Tc(i, L) has its own advantage and
drawback. The definition T

(f)
c (i, L), that uses the free-

energy, is probably the most natural one, but introduces
logarithmic corrections, already in the pure PS model. The
definition T

(θ)
c (i, L), that uses the sample-replication pro-

cedure, may appear more artificial in the disordered case,
but it does not introduce logarithmic corrections. We have
checked numerically that both definitions actually yield
very similar results for critical exponents and scaling dis-
tributions, even though they give different values for a
given sample. This shows that the conclusions that can
be obtained do not depend on the precise definition of the
pseudo-critical temperature.

3.3 Distribution of pseudo-critical temperatures

In all cases (c = 1.5, 1.75 and 2.15), and for both def-
initions of the pseudo-critical temperature (either from
the free-energy or from the sample-replication procedure),
we numerically obtain that the distributions of pseudo-
critical temperatures follows the scaling form

PL(Tc(i, L)) 	 1
∆Tc(L)

g

(
x =

Tc(i, L) − T av
c (L)

∆Tc(L)

)
(26)

where the scaling distribution g(x) is simply Gaussian

g(x) =
1√
2π

e−x2/2. (27)

This means that the only important properties of the
pseudo-critical temperatures distribution are the behav-
iors of its average T av

c (L) and width ∆Tc(L) as L varies.
For the average T av

c (L), we have fitted our data with
the power-law (Eq. (1)) for the temperature T

(θ)
c (i, L),

and with the generalized form involving logarithm (see
Eq. (22) for the pure case) for the temperature T

(f)
c (i, L)

T av(θ)
c (L) − Tc(∞) 	 −Aθ

(
1
L

)1/νR

(28)

T av(f)
c (L) − Tc(∞) 	 −Af

(
ln L

L

)1/νR

. (29)

The two definitions of Tc(i, L) then yield compatible es-
timates for the exponent νR and the critical temperature
Tc(∞).
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Fig. 1. Illustration of the crossing procedure to obtain the pseudo-critical temperatures Tc(i, L) for two samples i = i1, i2 (a)
for the case c = 1.5 with L = 50 000; (b) for the case c = 1.75 with L = 100 000.

For the variance, we have fitted our data with the
power-law (Eq. (5)) for both definitions of pseudo-critical
temperatures, and the two definitions of Tc(i, L) then yield
compatible estimates for the corresponding exponent.

3.4 Study of self-averageness in the critical region

As already mentioned in the Introduction, the issue of self-
averageness at random critical points is directly related to
the scale of the width of the pseudo-critical temperatures
[4,6]: if the width ∆Tc(L) is of the same order of the shift
T av

c (L) − Tc(∞), there is no self-averaging at Tc(∞).
We have thus measured for PS-models the L depen-

dence of the ratio Rθ(T, L) defined in equation (6) for the
contact density for temperature T in the critical region

Rθ(T, L) ≡ Var[θi(T, L)]
(θi(T, L))2

. (30)

We have also studied the issue of self-averageness at
Tc(i, L) via the measure of the ratio

Rc(L) ≡ Var[θi(Tc(i, L), L)]
(θi(Tc(i, L), L))2

. (31)

We now make contact with the finite size scaling Ansatz
of [3,6] for an observable X

X
(i)
L (T ) = LρQi

(
(T − Tc(i, L))L1/νR

)
(32)

where sample dependence arises through both Tc(i, L) and
the scaling function Qi. The ratio Rθ(T, L) mostly tests
the relevance of the variance ∆Tc(L), whereas the ratio
Rc(L) of equation (31) directly tests the sample depen-
dence of Qi(0) for the observable X = θ. We have mea-
sured the ratio Rc(L) for both definitions of Tc(i, L). Al-
though numerically different, their qualitative behaviour
is the same: whenever disorder is relevant, the ratio Rc(L)
grows with L.

We now present our results for the different loop ex-
ponents c.

4 The case of marginal disorder (c = 1.5)

The marginal case c = 1.5 corresponds to two-dimensional
wetting and has been the subject of a long-standing
debate [10–16]. On the analytical side, efforts have fo-
cused on the small disorder limit: reference [10] finds a
marginally irrelevant disorder where the quenched criti-
cal properties are the same as in the pure case, up to
subdominant logarithmic corrections. Other studies have
concluded that that the disorder is marginally relevant
[11–13]. On the numerical side, the same debate on the dis-
order relevance took place. The numerical studies of refer-
ence [10] and reference [14] have concluded that the critical
behavior was indistinguishable from the pure transition.
On the other hand, the numerical study of [11] pointed
towards a negative specific heat exponent (α < 0), and
finally reference [15] has been interpreted as an essential
singularity in the specific heat, that formally corresponds
to an exponent α = −∞.

It is thus very interesting to study the marginal case
c = 1.5 from the point of view of the histogram of pseudo-
critical temperatures and of self-averaging properties to
clarify the situation.

4.1 Distribution of pseudo-critical temperatures

The histograms of both definitions of the pseudo critical
temperatures Tc(i, L) are shown on Figures 2a and b. As
mentioned previously, both rescaled distributions shown
in the Insets of Figure 2 are Gaussian (Eq. (26)).

The averages T av
c (L) behave as

T av(θ)
c (L) 	 45.15− 132

(
1
L

)0.47

T av(f)
c (L) 	 45.25− 335

(
ln L

L

)0.46

. (33)

These values of Tc(∞) ∼ 45.2 agree with a different de-
termination via the loop statistics in [16]. The measured
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Fig. 2. Case c = 1.5: distribution of pseudo-critical temperatures Tc(i, L), together with the rescaling of equation (26) in Inset.

(a) for definition T
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c (i, L) with samples size from L/1000 = 4(◦) to 2048 (thick line); (b) for definition T
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size from L/1000 = 2 (dashed line) to 2048 (thick line).
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Fig. 3. Case c = 1.5: (a) ratio Rθ(T, L) for sizes L/1000 = 1(◦) to 2048 (thick line); (b) the ratios Rc(L) of (Eq. (31)),

corresponding to definitions T
(θ)
c (i, L) (thick line) and T

(f)
c (i, L) (thin line), both grow with L.

exponent νR is very close to the pure exponent νP = 2.
However, this does not mean that the disorder is irrele-
vant, since power-law fits of the variances yield

∆T (θ)
c (L) 	 206

(
1
L

)0.44

∆T (f)
c (L) 	 188

(
1
L

)0.44

. (34)

Note that disorder being marginal, extra logarithmic fac-
tors could be present in the shift and in the variance. The-
oretical predictions on this point are however unavailable,
and we have not tried to include these extra factors in the
above fits.

Our conclusion is that the shift and the width have
very close exponents, pointing towards a random critical
point (Eq. (5)) with non self-averaging properties that we
now consider.

4.2 Non-self-averaging properties

We show in Figure 3a the behavior of the ratio Rθ(T, L)
defined in (Eq. (30)). Near the critical temperature
Tc(∞) ∼ 45.2 obtained in equation (33), this ratio clearly
displays a lack of self averaging, as expected at random
critical points (Eq. (9)).

We show on Figure 3b the ratios Rc(L) of equa-
tion (31) corresponding to the two definitions of Tc(i, L).
They both grow with L.

4.3 Conclusion on the nature
of the transition for c = 1.5

Our numerical results (33, 34) indicate that in the pres-
ence of disorder, the shift- and width- exponents are close
to each other and to the pure case exponent 1

νpure
= 0.5.

We thus conclude

νrandom = 2 = νpure. (35)



C. Monthus and T. Garel: Disordered Poland-Scheraga models 399

10 20 30 40 50
0

0.1

0.2

0.3

0.4

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

T

frequency

(a)

10 20 30 40 50
0

0.2

0.4

0.6

0.8

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

T

frequency

(b)

Fig. 4. Case c = 1.75: distribution of pseudo-critical temperatures Tc(i, L), together with the rescaling of equation (26) in Inset.

(a) for definition T
(θ)
c (i, L) with samples size from L/1000 = 1(◦) to 128 (thick line); (b) for definition T

(f)
c (i, L) with samples

size from L/1000 = 2(◦) to 2048 (thick line).
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Fig. 5. Case c = 1.75: (a) ratio Rθ(T, L) for sizes L/1000 = 1(◦), 2, 4, 8, 16, 32, 64, 128, 256 (thick line); (b) the ratios Rc(L) of

(Eq. (31)), corresponding to definitions T
(θ)
c (i, L) (thick line) and T

(f)
c (i, L) (thin line), both grow with L.

The disorder is nevertheless relevant in the sense that
there is a lack of self-averaging properties at criticality
as in equation (9), because both the width ∆Tc(L) and
the shift [Tc(∞)− T av

c (L)] decay with the same exponent

∆Tc(L) ∼ [Tc(∞) − T av
c (L)] ∼ L−1/2. (36)

5 The case of relevant disorder (c = 1.75)

5.1 Distribution of pseudo-critical temperatures

The histograms of both definitions of the pseudo critical
temperatures Tc(i, L) are shown in Figures 4a and 4b.
Both rescaled distributions shown in the Insets of Figure
4 are Gaussian (Eq. (26)).

The respective averaged T av
c (L) behave as

T av(θ)
c (L) 	 45.2 − 155

(
1
L

)0.35

T av(f)
c (L) 	 45.4 − 140

(
ln L

L

)0.37

. (37)

This shift with the size L shows (Eq. (11)) that the expo-
nent 1/νR = 0.35 is very different from the pure exponent
1/νP = c − 1 = 0.75. As expected, the random exponent
satisfies the general bound νR ≥ 2 [2]. For both definitions
the widths decay with the same exponent, namely

∆T (θ)
c (L) 	 134

(
1
L

)0.38

∆T (f)
c (L) 	 117

(
1
L

)0.38

(38)

in agreement with the prediction of equation (5)

∆Tc(L) ∼ T av
c (L) − Tc(∞) (39)

for random critical points.

5.2 Non-self-averaging properties

We show in Figure 5a the behavior of the ratio Rθ(T, L)
defined in equation (30). It clearly displays a lack of self
averaging, as expected at random critical points (Eq. (9)).
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Fig. 6. Case c = 2.15: distribution of pseudo-critical temperatures Tc(i, L), together with the rescaling of equation (26) in Inset.

(a) For definition T
(θ)
c (i, L) with samples size from L/1000 = 1(◦) to 128 (thick line); (b) for definition T

(f)
c (i, L) with samples

size from L/1000 = 2 (dashed line) to 512 (thick line).

We show in Figure 5b the ratios Rc(L) of equation (31)
corresponding to the two definitions of Tc(i, L). They both
grow with L.

5.3 Conclusion on the transition for c = 1.75

For relevant disorder c = 1.75, our conclusion is that the
width ∆Tc(L) and the shift [Tc(∞) − T av

c (L)] decay with
the same new exponent L−1/νrandom (where νrandom ∼
2.7 > 2 > νpure) and there is no self-averaging at critical-
ity, in agreement with the general predictions (5) and (9)
for random critical points.

6 Disorder effects on a first order transition
(c = 2.15)

The case c = 2.15 is of special interest in the con-
text of DNA denaturation, and the nature of the tran-
sition in the presence of disorder has been under debate
recently [30,25,31]. The numerical studies [30,25] with
bound-unbound boundary conditions have found crossings
of the energy density (Fig. 4 of [30] and Fig. 7b of [25])
and of the contact density (Fig. 6b of [25]) for various
sizes L. These results point towards a finite energy den-
sity and a finite contact density at criticality. However,
a recent probabilistic analysis [31] of the disordered PS
model with c > 2 has concluded that the second deriva-
tive of the free-energy remains bounded when approaching
the critical point from the localized phase, and that the
order parameter vanishes continuously. It is thus interest-
ing to reconsider the problem from the point of view of
the distribution of pseudo-critical temperatures to clarify
the nature of the transition.

6.1 Distribution of pseudo-critical temperatures

The histograms of both definitions of the pseudo critical
temperatures Tc(i, L) are shown in Figures 6a and b. Both
rescaled distributions shown in the Insets of Figure 6 are
Gaussian (Eq. (26)).

The averages T av
c (L) behave as

T av(θ)
c (L) 	 81.36 − 1254

L

T av(f)
c (L) 	 81.38 − 357

(
ln L

L

)
. (40)

The two values of Tc(∞) are close and agree with the value
obtained in reference [25] with a different method. On one
hand, according to equation (1), this behavior of the shift
seems to indicate that the exponent is unchanged with
respect to the pure case νR = 1 = νP . On the other hand,
the width is found to be much bigger than the shift since

∆T (θ)
c (L) 	 23.8

(
1
L

)0.49

∆T (f)
c (L) 	 23.2

(
1
L

)0.49

. (41)

This behavior corresponds to the Central Limit estimation
L−1/2, as in the Harris argument.

The fact that the shift and the width exhibit different
exponents actually means that two diverging correlation
lengths coexist in the presence of disorder

ξshift(T ) ∼ 1
(Tc − T )

ξvar(T ) ∼ 1
(Tc − T )2

. (42)

The presence of two different correlation length exponents
was already found in other models, in particular in the
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random transverse field Ising chain [33], where the ex-
ponent ν = 2 governs the decay of averaged correlation,
whereas ν̃ = 1 governs the decay of typical correlations.
In Section 7.1 A of reference [33], a scaling analysis of dis-
order effects on first-order phase transitions in dimension
d suggests that the presence of two different correlation
length exponents ν = 2/d and ν̃ = 1/d should be generic
in these systems: the exponent ν̃ = 1/d is expected to de-
scribe the rounding of the transition in a typical sample,
whereas ν = 2/d describes the rounding of the transition
of the distribution of samples. We will discuss this issue
in more details in Section 6.4, after the description of our
numerical results on non-self-averaging properties.

6.2 Non-self-averaging properties

We show in Figure 7a the behavior of the ratio Rθ(T, L)
defined in equations (30). It clearly displays a lack of self
averaging at criticality.

We show in Figure 7b the ratios Rc(L) of equation (31)
corresponding to the two definitions of Tc(i, L). They both
grow with L.

6.3 Finiteness of the contact density at criticality

The dominance of the variance (41) over the shift (40) in-
dicate that asymptotically for large L, half of the samples
(i, L) are still localized at Tc(∞), whereas the other half
is already delocalized. This suggests that the contact den-
sity is finite at criticality, as we have numerically found
in our previous study [25]. However, since reference [31]
states that the order parameter vanishes continuously at
the transition, we have performed more detailed calcula-
tions. Figure 8 (which is more detailed than Fig. 6b of our
previous study [25]) shows the averaged contact density
θL(T ) as a function of the temperature T for several sizes:
the results cross regularly without rescaling. This points
towards a finite contact density at criticality.
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0.4

0.5

T

θ (T)
L

Fig. 8. Case c = 2.15: crossing of the averaged contact density
θL(T ) for sizes from L/1000 = 1(◦) to 2048 (thick line).

6.4 Discussion on the nature of the transition
for c = 2.15 in the presence of disorder

Our present study shows that, in the presence of disorder,
the transition for c = 2.15 is an unconventional random
critical point with two different correlation length expo-
nents ν = 2 and ν̃ = 1 (42). This is in contrast with usual
random critical points, arising from second order tran-
sitions with relevant disorder, where the same exponent
is expected to govern the width and the shift (Eq. (5)),
but this is reminiscent of what happens at strong disor-
der fixed points [33,34]. The question is now which cor-
relation exponent appears in a given observable. In the
random transverse field Ising chain where many exacts
results are known for exponents and scaling distribution
functions [33], it is well understood how the two exponents
ν = 2 and ν̃ = 1 govern respectively the averaged/typical
correlations. Here in the disordered PS model, the analog
of the correlation function is the loop distribution. To sim-
plify the discussion, let us more specifically consider the
probability of an end-to-end loop of length L in sample



402 The European Physical Journal B

(i) of length L, which is directly related to the partition
function Z

(i)
L (T ) of sample (i)

P
(i)
L (L, T ) =

2L

Lc

1

Z
(i)
L (T )

. (43)

Introducing for each sample (i) the difference between the
free-energy density F

(i)
L (T )/L = −T ln Z(i)(L, T )/L and

the delocalized value fdeloc = −T ln 2

f (i)(L, T ) ≡ −T ln Z(i)(L, T )
L

+ T ln 2 (44)

one gets

lnP
(i)
L (L, T ) = −c lnL + Lβf (i)(L, T ). (45)

The self-averaging property of the free energy means that
f

(i)
L (T ) converge for large L to a non-random value f(T )

for any sample (i) with probability one

f
(i)
L (T ) −→

L→∞
f(T ) (46)

where f(T ) is the free-energy difference between the local-
ized phase and the delocalized phase: f(T < Tc) < 0 and
f(T > Tc) = 0. This translates immediately into the cor-
responding statement (45) for the logarithm of end-to-end
loop probability

lnP
(i)
L (L, T )

L
−→

L→∞
βf(T ) (47)

for any sample (i) with probability one. Since the typical
correlation length ξ̃(T ) is usually defined as the decay rate
of the logarithm of the correlation, we obtain here that it
is simply given by the inverse of the free-energy f(T )

1
ξ̃(T )

≡ − lim
L→∞

(
lnP

(i)
L (L, T )

L

)

= −βf(T ). (48)

Here for c = 2.15, we expect from the discussion of the
previous Section 6.3 that the contact density is finite at
criticality: this implies that the energy is also finite at
criticality, and thus we are led to the conclusion that the
free-energy vanishes linearly

f(T ) −→
T→T−

c

(Tc − T ). (49)

The typical correlation length involves the exponent ν̃ = 1

ξ̃(T ) −→
T→T−

c

(Tc − T )−ν̃ with ν̃ = 1. (50)

Let us now consider the decay of the averaged end-to-end
loop distribution that defines an a priori different correla-
tion length ξ(T )

ln
(
P

(i)
L (L, T )

)

L
−→

L→∞
− 1

ξ(T )
. (51)

This correlation length ξ(T ) determines the divergence of
high moments of the averaged loop distribution. At a given
temperature T < Tc, these moments will actually be dom-
inated by the rare samples of length L which are already
delocalized at T , i.e. the samples having Tc(i, L) < T .
Since our numerical results indicate that the distribution
of the pseudo-critical temperature Tc(i, L) is a Gaussian
with mean and width given respectively by equations (40)
and (41), we obtain that the fraction of delocalized sam-
ples presents the following exponential decay in L

Prob[Tc(i, L) < T ] ∼ e−(T∞
c −T )2L. (52)

This measure of the rare delocalized samples will govern
the decay of the averaged loop distribution, and the cor-
relation length defined in equation (51) thus involves the
exponent ν = 2

ξ(T ) −→
T→T−

c

(Tc − T )−ν with ν = 2 (53)

in contrast with the typical correlation length (50).
To better understand the emergence of two different

correlation lengths, we have numerically measured the dis-
tribution over the samples (i) of the free-energy f (i)(L, T )
defined in equation (44). We obtain that for T < Tc

f
(i)
L (T ) = f(T ) +

aT

L
+

σT ui√
L

(54)

where aT is temperature dependent and ui is a Gaussian
random variable of zero mean and of variance 1

G(u) =
1√
2π

e−
u2
2 . (55)

The averaged end-to-end loop distribution then reads
equation (45)

P
(i)
L (L, T ) =

1
Lc

eLβf(i)(L,T ) =
1
Lc

eLβf(T )

×
∫ +∞

−∞
du G(u)e

√
LβσT u =

1
Lc

eLβf(T )+L
β2σ2

T
2 . (56)

The difference between the correlation length ξ(T ) equa-
tion (51) and the typical correlation length equation (48)
is due to the variance σ2

T

1
ξ(T )

=
1

ξ̃(T )
− β2σ2

T

2
. (57)

In particular, to obtain the scaling 1
ξ(T ) ∼ (Tc − T )2 dif-

ferent from 1
ξ̃(T )

∼ (Tc − T ), the variance term in σ2
T has

to cancel exactly the leading order in (Tc − T ) on the left
hand-side.

So the picture that emerges of the present analysis is
very reminiscent of what happens at strong disorder fixed
points [33,34]: the exponents ν̃ = 1 and ν = 2 govern re-
spectively the decay of typical/averaged loop distribution.
Our conclusion is thus that the exponent ν̃ = 1 governs
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the free-energy (49) that corresponds to a Lyapunov ex-
ponent, i.e. it describes the critical behavior of any typical
sample, whereas the exponent ν = 2 = 2/d is the finite-
size scaling exponent of Chayes et al. [2] and is related to
the variance of the distribution of pseudo-critical temper-
atures. Figure 8 of our previous paper [25] may be now
interpreted as follows: for each sample, the critical region
has a width of order 1/L, whereas the contact density
averaged over the samples decay on a much wider scale
1/

√
L that represents the sample-to-sample fluctuations

of the pseudo-critical temperatures Tc(i, L).

7 Summary and discussion

In this paper, we have used the recent progresses in the
theory of finite-size scaling in disordered systems [3–8] to
study the role of disorder in Poland-Scheraga models. We
have obtained that the numerical measure of the distribu-
tion of pseudo-critical temperature Tc(i, L) over the sam-
ples is a very powerful tool to elucidate the true nature of
random critical points. The comparison between the aver-
aged shift T av

c (L)−Tc(∞) and the width ∆Tc(L) clarifies
the role of disorder, and allows one to understand the non
self averaging properties of various observables at Tc(∞)
whenever disorder is relevant.

For c = 1.75 corresponding to a second order transition
with relevant disorder, we have obtained that both the
width ∆Tc(L) and the shift [Tc(∞) − T av

c (L)] decay as
L−1/νrandom with the same new exponent νrandom ∼ 2.7 >
2 > νpure.

For c = 1.5 corresponding to a second order tran-
sition with marginal disorder, we have obtained that
the exponent is unchanged ν = 2 with respect to the
pure case, but that disorder is nevertheless relevant: the
width ∆Tc(L) ∼ L−1/2 is of the same order of the shift
T av

c (L) − Tc(∞) ∼ L−1/2 and this means that thermo-
dynamic observables (apart from the free-energy) remain
distributed at criticality. We have checked it numerically
for the contact density.

For c = 2.15 corresponding to a first order transition in
the pure case, we have obtained that the width ∆Tc(L) ∼
L−1/2 dominates over the shift T av

c (L) − Tc(∞) ∼ L−1.
The presence of two correlation length exponents ν = 2
and ν̃ = 1 is reminiscent of what happens at strong disor-
der fixed points [33,34], and we have explained how these
two exponents appear respectively in the typical and av-
eraged loop distributions.

It is a pleasure to thank A. Billoire, G. Giacomin, J. Houdayer,
F. Iglói and J. Jacobsen for discussions.
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